Search

martedì 27 gennaio 2009

Fibonacci e la sezione aurea in natura



Cosa hanno in comune una galassia, l'accrescimento biologico di alcune specie animali, la spaziatura tra le foglie lungo uno stelo e la disposizione dei petali e dei semi di girasole? Tutti questi presentano schemi riconducibili a quello della sezione aurea e dei numeri di Fibonacci.

Ecco qui rappresentata una serie di esempi in cui l’espressione matematica della sezione aurea si manifesta nella bellezza e della eleganza della natura.

Fibonacci e la galassiaFibonacci e la conchigliaFibonacci e l'arieteFibonacci e la pignaFibonacci e il girasoleFibonacci e la rosaFibonacci e l'ananas

L'elemento comune di tutte figure è rappresentato dalla spirale logaritmica detta anche "spirale aurea", attraverso la quale lo sviluppo armonico della forma è legato alla necessità degli esseri viventi di accrescere "secondo natura" in maniera ottimale e meno dispendiosa possibile.

Esaminando in maniera più approfondita la forma di fiori come la margherita, il girasole o una comune pigna notiamo che esiste una stretta relazione con i numeri di Fibonacci.

Sulla testa di un tipico girasole, per esempio, il numero delle spirali rientra molto spesso in questo schema: 89 spirali che si irradiano ripide in senso orario; 55 che si muovono in senso antiorario e 34 che si muovono in senso orario ma meno ripido. Il più grande girasole che si sia mai conosciuto aveva 144, 89 e 55 spirali.

Questi sono tutti numeri che appartengono alla sequenza di Fibonacci!

Così in molte specie vegetali, prime fra tutte le Astaracee (girasoli, margherite, ecc.), il numero dei petali di ogni fiore è di solito un numero di Fibonacci, come 5, 13, 55 o perfino 377, come nel caso della diaccola. Le brattee delle pigne si dispongono in due serie di spirali dal ramo verso l'esterno - una in senso orario e l'altra in senso antiorario. Uno studio di oltre 4000 pigne di dieci specie di pino rivelò che oltre il 98 per cento di esse conteneva un numero di Fibonacci nelle spirali che si diramavano in ogni direzione.

Inoltre, i due numeri erano adiacenti, o adiacenti saltandone uno, nella sequenza di Fibonacci - per esempio 8 spirali in un senso e 13 nell'altro, o 8 spirali in un senso e 21 nell'altro. Le scaglie degli ananas presentano un'aderenza ancora più costante ai fenomeni di Fibonacci: non una sola eccezione fu trovata in un test compiuto su 2000 ananas.

I numeri di Fibonacci si trovano anche nella fillotassi, l'ordinamento delle foglie su un gambo. Fu Keplero a rilevare che su molti tipi di alberi le foglie sono allineate secondo uno schema che comprende due numeri di Fibonacci. Partendo da una foglia qualunque, dopo uno, due, tre o cinque giri dalla spirale si trova sempre una foglia allineata con la prima e a seconda delle specie, questa sarà la seconda, la terza, la quinta, l'ottava o la tredicesima foglia.

Fibonacci e la fillotassi

Anche Leonardo da Vinci, nei suoi studi sulle piante, rilevò nei sui studi come dalla struttura a strati concentrici dei tronchi si possa arrivare all’età della pianta (il geotropismo e l’eliotropismo) e descrisse questa particolare dispersione delle foglie rispetto alla loro inserzione sui fusi e alle loro ramificazioni.
Forse si troverà ancora qualche principio che colleghi tutti gli esempi naturali di fenomeni aurei e indichi altre manifestazioni non ancora scoperte. Forse gli esseri umani hanno percepito inconsciamente tale principio in questi fenomeni naturali e se ne sono serviti come metro di giudizio per valutare le opere d'arte.

D'altra parte, non è escluso che si tratti soltanto di coincidenze. E' stato fatto notare che esiste soltanto un numero ordinato di disegni ordinati possibili per gli artisti. Una certa ripetizione di questi disegni è quindi inevitabile.

Inoltre, molte grandi opere d'arte non hanno nessun rapporto apparente con la proporzione divina. E molti esempi si avvicinano soltanto in maniera approssimativa all'ideale. Infine, il gusto per la proporzione divina può essere apparso naturale solo dopo un lungo uso da parte dei greci e dei loro imitatori.

Anche in natura troviamo che alcuni dei fenomeni citati non sono che manifestazioni occasionali o approssimative della spirale aurea o della sequenza di Fibonacci. In ogni caso questi esempi comportano soltanto un numero limitato di fenomeni. Sono state avanzate teorie specifiche in vari campi per spiegare alcuni casi particolari, come la fillotassi (la disposizione delle foglie). Ebbene, queste teorie non hanno alcuna applicazione universale.

Anche se non si trova mai una spiegazione universale, lo studio dei fenomeni aurei e delle successione numerica di Fibonacci può essere visto come un nobile esercizio nella ricerca di unità e di rapporti matematici. In fin dei conti, la ricerca era una caratteristica fondamentale della filosofia greca e anima tuttora la scienza moderna.


Nessun commento:

Posta un commento

☥ Cerco un attimo che valga una vita ∞